
Computer simulation of multi-gigawatt magnetic compression lines 

V. Patrakov1,2,*, S. Rukin1 

1Institute of Electrophysics UB RAS, Yekaterinburg, Russia 
2Ural Federal University, Yekaterinburg, Russia 

*vitpatrakov@gmail.com 

 
Abstract. Magnetic compression lines (MCL) are novel solid-state devices for multi-gigawatt sub-

nanosecond and picosecond pulse amplification. Their operation is based on the interaction of magnetic 

field created by a powerful nanosecond or sub-nanosecond pulse with the magnetization vector in a 

ferrite medium. In this study a numerical model of an MCL was created, based on Maxwell’s equations 

and Landau-Lifshitz-Gilbert equation for magnetization dynamics. The equation system is solved using 

COMSOL Multiphysics simulation software. The model shows good agreement with the experimental 

data. Using the created model, the process of power amplification in MCL was analyzed in terms of 

magnetic field and magnetization vectors. Based on this analysis, the mechanism of unipolar pulse 

amplification has been proposed.   

Keywords: solid-state pulsed power, high-power picosecond generators, magnetic compression lines, 

numerical simulation. 

 

1. Introduction 

Non-linear transmission lines (NLTL) filled with saturated ferrite are promising solid-state 

sources of high-power microwave radiation. Such NLTLs are usually called gyromagnetic NLTLs 

(GNLTLs) because their operation principle is based on gyromagnetic precession of magnetization 

vector M in ferrite, which is magnetized into the state of deep magnetic saturation [1, 2]. A GNLTL 

typically consists of a coaxial transmission line, partially or fully filled with ferrite material, and an 

external magnetic bias circuit. The bias circuit creates axial saturating H-field, denoted as Hz. When 

a high voltage unipolar nanosecond pulse travels through such GNLTL, the azimuthal magnetic field 

Hθ, created by the current pulse, causes a gyromagnetic precession of the magnetization vector in the 

ferrite. This precession modulates the traveling wave with high-power oscillations of microwave 

frequency. At present, such GNLTLs can provide microwave generation at frequencies as low as 

1 GHz and as high as 20 GHz [3], with typical pulsed RF power being in 10–100 MW range. 

In recent years it has been observed that GNLTLs can also increase the peak power of unipolar 

pulses in the multi-gigawatt power range [4–6]. A GNLTL operating in this regime is called Magnetic 

Compression Line (MCL). In MCL, the incoming pulse is approximately equal in duration to a single 

period of the oscillations generated by the gyromagnetic precession. This condition allows the first 

half-cycle of the generated oscillations to effectively be used as a shorter, more powerful pulse. The 

theoretical estimate for a maximum coefficient of voltage amplification for MCL is √2. To date, the 

highest reported pulse power achieved using the MCL approach is 77 GW at 48-Ω load, with the 

pulse amplitude of 1.93 MV and pulse duration of 105 ps (FWHM) [6]. Contrary to typical spark-

gap-based picosecond sharpeners, MCL operates without any switching elements, amplifying the 

pulse during its propagation through the line. This eliminates usual time limitations associated with 

spark gap switching time and allows to smoothly transition to picosecond megavolt pulse domain.  

The development of MCL approach creates the need to accurately predict the operation of 

designed MCL stages and to study the underlying physical processes; hence, a numerical model of 

MCL device is needed. In literature there are reports on numerical models of GNLTLs, which are 

usually based on one of the two approaches. Several models [7, 8] consider the GNLTL as a 

transmission line, which can be described by the telegraph equations. The magnetization dynamics is 

solved using the Landau-Lifshitz-Gilbert equation (LLG) for a magnetized medium. Other models 

implement a more generalized approach [9–11], in which the line is solved as an electrodynamic 

structure using a full set of Maxwell’s equations, while the magnetization dynamics is solved using 
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LLG equation. In present study it was decided to create a numerical model for the MCL using 

Maxwell’s equations to solve the electrodynamic part of the model, and LLG equation to solve the 

precession of magnetization vector M in ferrite. The resulting coupled system is solved using 

COMSOL Multiphysics numerical simulation software [12]. 

 

2. Numerical model 

To solve the propagation of an electromagnetic wave inside the coaxial line, Maxwell’s 

equations were used. Using magnetic vector potential A, defined as (curl A) = B, and defining static 

electric potential to be φ = 0 (Weyl/Gibbs/temporal gauge), the Maxwell’s system can be rewritten 

as one A-dependent equation (1): 
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Here µ0 = 4π·10-7 H/m is permeability of free space, M is the magnetization of the medium, σ is 

electrical conductivity of the medium, ε0 = 8.854·10-12 F/m is permittivity of free space, ε is relative 

permittivity of the medium. As can be seen, such formulation assumes time-independent permittivity, 

i.e. no dielectric dispersion in dielectric medium. On the other hand, the magnetization term M is 

fully adjustable and can be set to account for any needed magnetization dynamics. 

The magnetization dynamics for ferrite in a saturated state can be described using the Landau-

Lifschitz-Gilbert equation (2): 
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Here γ is electron gyromagnetic ratio, taken as 1.76·1011 rad/(s·T), Heff is effective magnetic field 

experienced by the magnetic medium, Ms is the magnitude of saturation magnetization of the medium, 

and α is Gilbert’s dimensionless damping coefficient, which usually is on the order of 0.01–0.1. The 

first term on the right-hand side of this equation has the physical meaning of a torque experienced by 

the magnetization in external magnetic field. This torque in a lossless case would cause the 

magnetization M to continuously precess around the vector Heff. The second term is damping term, 

which rotates the torque to some degree in the direction of Heff, which causes the precession to fade 

over time, eventually leading to the magnetostatic case, where M is aligned with Heff. Overall, the 

result of this process is that when the magnetic field is rapidly changed to a new direction, the M 

vector follows it, precessing around the new equilibrium state, until it fully aligns to the new position 

of Heff. 

Equations (1) and (2) describe the dynamical part of the system. To find the initial distribution 

of bias H-field, a preliminary calculation is performed, which solves the magnetostatic equation to 

find the distribution of Hbias in the ferrite, created by a solenoid of a known geometry. 

The described system of equations is solved using COMSOL Multiphysics numerical simulation 

software. To couple the system, M from the equation (2) is substituted into equation (1) as M in the 

curl term. Heff in equation (2) includes H found from equation (1), as well as Hbias found at the 

preliminary step. In the general case, Heff must also include the demagnetizing field Hd, which arises 

due to boundary conditions whenever a magnetized sample is put into an external magnetic field. 

This field reduces the actual H-field in the sample. The demagnetizing fields can also be induced as 

a result of the change in magnetic flux inside the line, such as when M changes its direction. Because 

both H and Hbias are found as a direct result of solving Maxwell’s equations with appropriate 

boundary conditions, the demagnetizing fields are automatically taken into account and no additional 

terms is needed. 
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Using this equation system, the model was created in two geometrical versions: 2D-

axisymmetric (with the assumption of ∂/∂φ = 0 for all variables, φ being the azimuthal angle), and 

full 3D. The advantage of the 2D model is a much lower computation time, while its obvious 

disadvantage is the inclusion of axisymmetric effects only. The outer and inner conductors of the 

coaxial line were modeled as a perfect electric conductor (PEC). At the boundary of the ferrite 

domain, the Brown boundary condition should be enforced, which is ∂M/∂n = 0, n being a unit vector 

normal to the boundary.  However, the default “zero flux” boundary condition provided by COMSOL 

at the boundaries of partial-differential-equation domains has the exact same physical meaning of a 

boundary which is impenetrable to the variable, in this case M, so no additional conditions need to 

be applied. 

 

3. Comparison with experimental data 

The created model was verified against the experimental data for MCL3 [5] and MCL4 [6] lines. 

To get a better qualitative and quantitative match, some of ferrite parameters in the model were 

optimized, given the natural spread in their values and the absence of specification of these parameters 

by the manufacturer. Namely, these parameters were: saturation magnetization Ms, Gilbert’s damping 

coefficient α, ferrite permittivity εf, and a total loss coefficient kloss, which was added as a scaling 

factor to the output pulse, to describe the attenuation of the pulse caused by the line losses 

(kloss = 0 – no losses, kloss = 1 – complete attenuation). For both lines optimal parameters were found 

to be: Ms = 310 kA/m, α = 0.20, εf = 14.5, kloss = 0.050. The comparison of the experimental 

waveform of the output pulse and a calculated one is shown in Fig.1a for MCL3 and in Fig.1b for 

MCL4. As can be seen, for MCL3 the model provides a good agreement with experimental data in 

shape, amplitude, and relative delay of main and secondary peaks of the output pulse. For MCL4 

qualitative agreement of the total pulse shape can be seen, with good quantitative agreement in the 

region of the main peak. 

 
         a b 

Fig.1. Comparison of experimental data and simulated waveform: (a) for MCL3, (b) for MCL4. 

 

In the process of optimization, some dependencies of pulse parameters on material parameters 

were observed. A very weak dependence on α was noted in the range of 0.001–0.2. Increasing α in 

the 0.2–0.8 range leads to a noticeable decrease in pulse amplitude. The values of Ms and εf are in 

good agreement with the ones usually given in NLTL papers, such as [3, 9, 10]. The value of εf has a 

direct influence on a relative delay between the two peaks of the output pulse, with higher values 

leading to higher delay. Higher values of εf also correspond to larger FWHM durations of the main 

peak. Increase in Ms leads to somewhat shorter main peak of the output pulse, increase in its 

amplitude, and a drop in the voltage level of the quasi-plateau between the peaks. Another factor that 
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affects the details of pulse shape was found to be the geometry of the external magnetizing solenoid, 

or, in other words, the spatial distribution of the bias field vector Hbias. The value of kloss is also 

realistic and agrees with known attenuation coefficients for picosecond pulses in coaxial lines.  

To compare the pulse evolution over the length of the MCL with the experimental data, a set of 

waveforms was experimentally obtained from MCL4, changing the number of ferrite rings in the 

MCL, i.e. changing the length of the amplifying section. The highest number of rings N = 88 

corresponds to the ferrite section length of 352 mm. The same experiment was simulated in the 

created model. The results of theoretical calculation and experimental data are shown in Fig.2 as 

power waveforms. For each number of rings an experimental waveform is shown as a solid line, and 

a simulated one as a dashed line. As can be seen, the simulated and experimental dynamics of pulse 

amplification are in good agreement with each other. 

 
Fig.2. The process of pulse transformation along the MCL4: comparison of experimental data and simulation. The 

number above each waveform denotes the number of ferrite rings used. 

 

4. Dynamics of power amplification process 

The created model allows studying the dynamics of all the vector quantities in the MCL, which 

gives us the insight into the process of power amplification.  For example, we will consider the 

process of power amplification in the MCL4 line. The quantities of interest are longitudinal magnetic 

field component Hz, azimuthal magnetic field component Hθ, magnetization M, and a total H-field 

vector Heff. Fig.3a shows the simulated waveform of the pulse as it passes the cross-section of the 

MCL with the longitudinal coordinate z = 200 mm from the beginning of the ferrite. Fig.3b shows 

the directions of mentioned vectors at the time points A–D, as marked on the waveform. 

The basic principle of power amplification in MCL is the induction of additional voltage across 

the line conductors by the change in magnetic flux produced by M vector. The reason for the 

appearance of the voltage in addition to the counter-EMF, which is always induced by the main pulse 

current, is the lag between the movement of M and Heff, which can be described by a divergence angle 

between these vectors αMH. Modifying the analysis performed in [8] for arbitrary αMH values, and 

assuming a steady precession of M around Heff with an angular frequency ω, the additional 

instantaneous induced voltage Vi can be written as (3): 
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where Rf and rf are the outer and inner radii of ferrite filling respectively and ∆z is a small arbitrary 

sampling step along MCL length, coming from the fact that equation (3) is derived using transmission 

line theory. As can be seen, the induced voltage is proportional to the ferrite filling factor of the line, 

the frequency of precession, saturation magnetization Ms, sine of αMH angle, and the relation between 

bias H-field and pulse H-field in a form of field factor Hz/(Hθ
2+Hz

2)0.5. 

 
 

Fig.3. (a) waveform of the voltage pulse at coordinate z = 200 mm; (b) corresponding positions of vectors of 

interest at time points A, B, C, D. 

 

From the formula (3) and Fig.3 the dynamics of the pulse amplification appears as follows. When 

the wave front of the pulse arrives at the cross-section of interest, the effective field Heff starts 

changing in both magnitude and direction. The magnetization M follows Heff, but with some delay, 

which at first creates an angle αMH of about 20 degrees between M and Heff (point A). This causes the 

voltage Vi to be induced, which increases the amplitude of the front of the traveling pulse. When the 

main body of the pulse arrives, the field factor becomes much smaller, because Hθ corresponding to 

the peak of the pulse is about 10 times bigger than Hz. Simultaneously, such an increase in Heff causes 

the M to follow it much more quickly, and the αMH angle reduces to 1–5 degrees (points B, C, D). 

These two factors, in accordance with formula (3), hinder further voltage induction, effectively 

ending the process of power amplification.  

The main difference of the described mechanism from a classical GNLTL operation seems to be 

in the time dependence of the induced voltage, caused by the difference in the relation of bias field 

and pulse field. In GNLTL the pulse field and bias field amplitudes are similar, with field factor 

Hz/(Hθ
2+Hz

2)0.5 being close to 0.5–0.7, and so the induced voltage takes a form of a decaying sine 

wave, leading to the induction of microwave oscillations. On the other hand, in MCL the amplitude 

of the driver pulse is much larger than in GNLTLs, which provides the field factors of 0.1 and lower, 

which effectively stops the induction process at times following the pulse front. This leads to a 

unipolar induced voltage wave traveling alongside the main pulse, which allows effective 

amplification of the main peak of the pulse. Thus, the dynamics of pulse formation in GNLTLs occurs 
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over the duration of several precession periods, while the dynamics of pulse formation in MCLs 

happens during a single precession turn. 

 

5. Conclusion 

In this study, a numerical model of a multi-gigawatt magnetic compression line was created 

using COMSOL Multiphysics simulation software. The created model shows a good agreement with 

experimental data, accurately predicting the overall shape of the output pulse and relative positions 

of main and secondary peaks, as well as the dynamics of the pulse amplification along the line. The 

model has allowed to study in detail the dynamics of magnetic field vector Heff and magnetization 

vector M during the process of power amplification in the MCL. The observed behavior of the vectors 

shows that the increase in peak power of the pulse can be associated with the induction of additional 

voltage across the line conductors at the beginning of the first turn of the gyromagnetic precession. 

Further induction is then minimized by high amplitude of the H-field in the main body of the pulse, 

which leads to an effective unipolar power amplification of the driver pulse.  
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