doi: 10.56761/EFRE2022.S4-P-040801

Пятиканальный усилитель запускающих импульсов

А.П. Артёмов*, А.В. Федюнин, А.Г. Русских, В.И. Орешкин

Институт сильноточной электроники СО РАН, Томск, Россия *artyomov@ovpe.hcei.tsc.ru

Аннотация. Разработан пятиканальный усилитель запускающих импульсов, который предназначен для повышения устойчивости запуска и уменьшения разброса срабатывания различных импульсных устройств, например, таких как сильноточный генератор тока. На выходе каждого канала формируется импульс напряжения с амплитудой –1 кВ. Усилитель был испытан при работе с высоковольтным газовым разрядником, формирующим импульс напряжения амплитудой –18 кВ для запуска сильноточного генератора. В результате испытаний было показано, что временной разброс запускающего импульса на выходе высоковольтного газового разрядника (–18 кВ) не превышал ±3 нс, а джиттер включения сильноточного генератора составлял ±10 нс.

Ключевые слова: импульсный сильноточный генератора, тригатронный искровой разрядник, генератор запускающих импульсов, Z-пинч, X-пинч.

1. Введение

В настоящее время в физике плазмы активно исследуются объекты, время жизни которых может составлять десятки и даже единицы наносекунд, например, электрический взрыв проводников, сжатие Z- и X-пинчей [1-6]. Часто для диагностики [1-3] и формирования [4-6] этих объектов в эксперименте необходимо использовать дополнительное высоковольтное оборудование, причем это оборудование должно быть синхронизовано с основным генератором с точностью не хуже ± 10 нс.

Для запуска сильноточных импульсных генераторов с рабочим напряжением свыше 30 кВ широко используются высоковольтные газовые разрядники (тригатроны) в качестве промежуточной ступени. Они позволяют формировать импульсы напряжения с амплитудой 15-20 кВ и временем нарастания менее 20 нс. В качестве первичного устройства запуска промежуточной ступени часто используются низковольтные многоканальные генераторы запускающих импульсов (ГЗИ), например, Model-575 (Berkeley Nucleonics Corp.), который обеспечивает временную задержку в диапазоне 0-1000 с с высокой точностью ±120 пс, однако амплитуда импульса напряжения составляет 60 В [7], что зачастую не достаточно для уверенного запуска импульсной сильноточной аппаратуры. В наших экспериментах мы используем генератор задержанных импульсов DPG (Delayed Pulses Generator), разработанный в Институте Сильноточной Электроники СО РАН (г. Томск) [3]. Он формирует запускающий импульс с амплитудой 300 В. Диапазон временных задержек составляет 0-1 мс с точностью ±1 нс. Шаг задержки равен 25 нс. В большинстве случаев, уровень пускового импульса в 300 В достаточен для уверенного запуска аппаратуры, но в ряде случаев приходится увеличивать длину кабеля между DPG и ступенью запуска генератора, что приводит к затуханию пускового импульса. В этом случае наблюдается либо большой временной разброс запуска тригатрона, либо он вообще не запускается.

Целью настоящей работы являлась разработка многоканального усилителя запускающих импульсов (УЗИ), обеспечивающего надежный запуск сильноточного генератора тока с минимальным джиттером запускающего импульса.

2. Описание усилителя запускающих импульсов

Внешний вид пятиканального усилителя запускающих импульсов показан на Рис.1. Принципиальная схема электрической цепи УЗИ показана на Рис.2. Схема работает следующим образом. Импульс $U_{\rm in} = 30{-}300~{\rm B}$ от DPG поступает на управляющий контакт I

полевого транзистора VT (К40Т1202). Отметим, что приложенное напряжение на управляющем контакте I не должно было превышать 30 В, поэтому в схему был установлен защитный диод VD (1.5КЕ20СА), ограничивающий амплитуду импульса запуска на уровне 25 В. Контакт 2 подключен к конденсатору C_1 , заряженному через резисторы R_1 и R_2 до напряжения $U_1 = 1$ кВ. Контакт 3 заземлен.

Рис.1. Внешний вид пятиканального усилителя импульсов запуска.

Когда импульс $U_{\rm in}$ от DPG поступает на контакт I полевого транзистора, конденсатор C_1 разряжается и на выходе усилителя формируется импульс $U_{\rm out}=-1$ кВ. Затем импульс $U_{\rm out}$ поступает на повышающий трансформатор напряжения промежуточной ступени запуска сильноточного генератора тока. На выходе трансформатора формируется импульс $U_{TV}=-10$ кВ, который затем подается на управляющий электрод тригатронного разрядника FV. Высоковольтный электрод тригатрона FV подключен к конденсатору C_2 , который заряжается до напряжения $U_2=18$ кВ. Когда происходит срабатывание разрядника, на противоположной обкладке конденсатора C_2 формируется импульс $U_{FV}=-18$ кВ, который поступает на следующую ступень запуска сильноточного генератор тока.

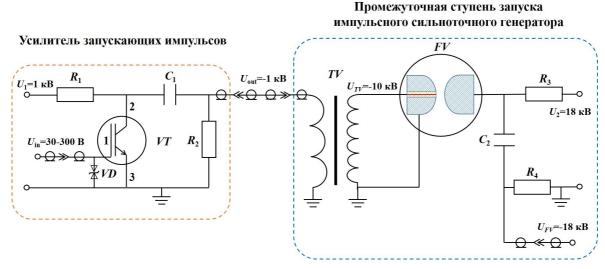
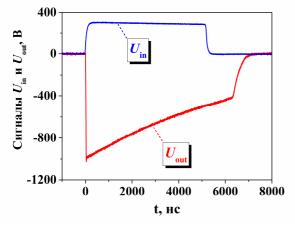



Рис.2. Принципиальная схема электрической цепи усиления импульса запуска.

3. Результаты испытаний

В ходе работы были выполнены тестовые испытания усилителя запускающих импульсов. Для регистрации электрических импульсов использовался осциллограф Tektronix

МDO-3104 с полосой пропускания 1 ГГц. При тестировании на вход усилителя подавался запускающий импульс $U_{\rm in}$ = 300 В от генератора DPG. На Рис.3 и 4 показаны осциллограммы импульсов на входе и выходе усилителя, $U_{\rm in}$ и $U_{\rm out}$ соответственно. Видно, что амплитуда выходного импульса составляет $U_{\rm out}$ = -1 кВ. Также отметим, что фронт импульса DPG составляет 130 нс, а фронт импульса на выходе УЗИ составил 20 нс, что в 6.5 раз короче. Причиной обострения фронта выходного импульса является включение в электрическую схему защитного диода VD (Рис.2). Если бы вместо диода был использован обычный ослабитель, то фронт выходного импульса составил бы те же 130 нс, что и на входе.

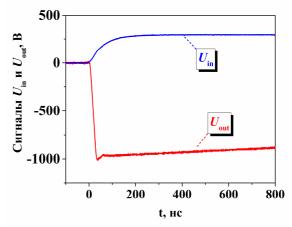
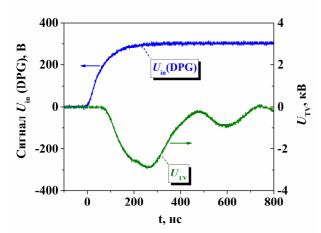



Рис.3. Импульсы запуска на входе $U_{\rm in}$ и выходе $U_{\rm out}$ усилителя.

Рис.4. Импульсы запуска на входе U_{in} и выходе U_{out} усилителя в увеличенном масштабе.

Далее было выполнено измерение импульса напряжения U_{TV} , формируемого на вторичной обмотке повышающего трансформатора TV (Рис.2), который затем поступает на управляющий электрод тригатронного разрядника. Сначала на вход трансформатора был подан импульс напряжения $U_{\rm in}$ напрямую от DPG без усиления. На Рис.5 показаны импульсы $U_{\rm in}$ и U_{TV} , полученные в режиме без усиления. После этого в цепь был добавлен усилитель запускающих импульсов и на вход трансформатора был подан импульс $U_{\rm out} = -1$ кВ. Импульсы $U_{\rm out}$ и U_{TV} , полученные в режиме с усилением, показаны на Рис.6.

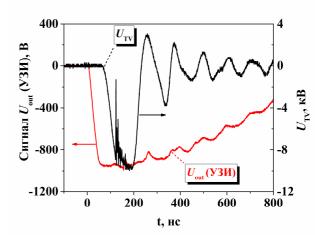


Рис.5. Импульс запуска U_{in} от DPG и импульс U_{TV} на вторичной обмотке трансформатора.

Рис.6. Импульс запуска U_{out} от УЗИ и импульс U_{TV} на вторичной обмотке трансформатора.

Можно видеть, что при включении в цепь системы запуска усилителя запускающих импульсов амплитуда импульса напряжения, приходящего на управляющий электрод

тригатрона, выросла более чем в 3 раза и составила 10 кВ, а фронт импульса сократился вдвое и составил 50 нс против 115 нс при прямом подключении DPG к промежуточной ступени запуска сильноточного генератора.

Дальнейшие испытания системы запуска с включенным в нее усилителем запускающих импульсов показали, что разброс срабатывания тригатронного разрядника промежуточной ступени запуска составил ±3 нс, а разброс начала импульса тока сильноточного генератора не превышал ±10 нс. В тоже время в схеме без усиления (Рис.5) разброс включения сильноточного генератора составлял ±70 нс, основной вклад в который вносил разброс срабатывания тригаронного разрядника промежуточной ступени запуска. Использование схемы запуска с УЗИ в экспериментах с РZ-пинчами (Point Z-pinch) [4, 5] дало возможность более точно задавать начальную линейную массу лайнера, которая определяется задержкой между началом тока сильноточной вакуумной дуги, используемой для получения материала лайнера, и началом тока сильноточного генератора, используемого для сжатия пинча. Отметим, что в наших экспериментах мы использовали только два канала запуска, но конструкция усилителя позволяет подключать параллельно до пяти потребителей без ухудшения характеристик выходного импульса.

4. Заключение

В ходе работы был разработан пятиканальный усилитель запускающих импульсов (УЗИ) для работы с сильноточными импульсными генераторами. Устройство позволяет усилить входной импульс запуска с 30–300 В до 1 кВ со сменой полярности запускающего импульса и обострить его фронт до 50 нс. Применение УЗИ в схеме запуска позволило обеспечить надежное включение импульсного сильноточного генератора в работу при удаленном расположении сильноточной аппаратуры от пульта управления, при этом джиттер момента начала тока генератора сократился до ± 10 нс. В схеме без усиления джиттер запуска генератора составлял ± 70 нс.

Благодарности

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-19-00686).

5. References

- [1] Tkachenko S.I., Romanova V.M., Mingaleev A.R., Ter-Oganesyan A.E., Shelkovenko T.A., and Pikuz S.A., *Eur. Phys. J. D*, **54**, 335, 2009; doi: 10.1140/epjd/e2008-00258-0
- [2] Sinars D.B., Shelkovenko T.A., Pikuz S.A., Hu Min, Romanova V.M., Chandler K.M., Greenly J.B., Hammer D.A., and Kusse B.R., *Phys. Plasmas*, **7**, 429, 2000; doi: 10.1063/1.873825
- [3] Baksht R.B., Rousskikh A.G., Zhigalin A.S., Oreshkin V.I., and Artyomov A.P., *Phys. Plasmas*, **22**, 103521, 2015; doi: 10.1063/1.4934925
- [4] Rousskikh A.G., Shishlov A.V., Zhigalin A.S., Oreshkin V.I., Chaikovaskii S.A. and Baksht R.B., *Plasma Sources Sci. Technol.*, **20**, 035011, 2011; doi: 10.1088/0963-0252/20/3/035011
- [5] Artyomov A.P., Chaikovsky S.A., Rousskikh A.G. and Fedunin A.V., *Journ. of Phys.: Conf. Series*, **1556**, 012083, 2020; doi: 10.1088/1742-6596/1556/1/012083
- [6] Cherdizov R.K., Baksht R.B., Kokshenev V.A., Oreshkin V.I., Rousskikh A.G., Shishlov A.V., Shmelev D.L. and Zhigalin A.S., *Plasma Phys. Control. Fusion*, **64**, 015011, 2022; doi: 10.1088/1361-6587/ac35a5
- [7] Berkeley Nucleonics Corp. *Model 575* | 0.001 Hz to 10 MHz Digital Delay / Pulse Generator. [online], https://www.berkeleynucleonics.com/Model-575