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Abstract. The theory of the gyrotron backward-wave oscillator based on a sectioned quasi-optical 

system with a zigzag trajectory of the operating wave beam is developed. The peculiarities of 

changing the operating frequency and output signal power in the process of broadband tuning of the 

generation frequency are explained. 
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1. Introduction 

Currently, subterahertz cyclotron masers (gyrotrons) with relatively high (tens of Watts – units 

of kilowatts) power in continuous generation regime are being actively developed, intended for use 

in spectroscopic applications. However, from the point of view of a number of such applications, it 

would be ideal to have a source that provides a combination of stability (a narrow band) of the 

generated wave signal together with the possibility of its smooth adjustment in a frequency band 

with a width of at least several percent. At the same time, the fundamental disadvantage of 

gyrotrons is that the use of selective cyclotron excitation by electrons of the near-cutoff axial mode 

of an open cavity with high Q-factor significantly limits the possibilities of frequency tuning in 

these auto-oscillators. 

 
quasi-optical mirrors

input wave

x

y

v
⊥

x

y

z

k

E
B

e

 

z0

n=1 n=2 n=3 n=4

ewave

x

dxe

3l 4l2ll

(b)

(a)

 
Fig.1. (a) Gyro-BWO with a zigzag quasi-optical system. (b) 2-D model of a system consisting of four sections of 

electron-wave interaction. 

 

Recently, a microwave system in the form of a quasi-optical transmission line has been 

proposed as an electrodynamic gyrotron system [1]. It consists of focusing mirrors that are 

periodically spaced along the longitudinal z axis and provide transportation of a Gaussian wave 

beam along a zigzag trajectory Fig.1. Electron-wave interaction occurs in areas where the wave, as 

in a gyrotron, propagates strictly across the electron beam, which leads to interaction with minimal 

sensitivity to the spread of particle velocities. The simulation demonstrates the attractiveness of this 

scheme for the implementation of a backward-wave oscillator (BWO) with a uniquely wide 

frequency tuning band. In this work, we develop a quasi-analytical theory of the zigzag gyro-BWO 
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described above, which explains the peculiarities of changes in the operating frequency and output 

signal power in the process of broadband frequency tuning provided by a change in the operating 

magnetic field. 

2. Model and equations 

We use a simple two-dimensional model described in detail in [2]. The electrons move along 

the longitudinal magnetic field B0 = z0B0 (Fig.1a), while the transverse size of the electron beam dx 

is large enough on the scale of the wavelength of the emitted wave. Along with translational motion 

along the z-axis, the particles also undergo cyclotron oscillations in the x–y plane. Fig.1b illustrates 

the 2-D model used in our analysis in the case when the system consists of four sections of an 

electrodynamic system. We assume that the amplitude of the wave an is uniform in the z-coordinate 

inside each section n, since this structure is supported by a quasi-optical mirror system. 

Let us use the known [3] asymptotic equations of motion describing the change in the 

normalized energy of particles u = (γ0 – γ)/pllC and their phases θ in the field of the operating wave. 
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Here ζ = Ckz is the normalized longitudinal coordinate. The traditional normalization for the Pierce 

factor C, describing the intensity of the electron-wave interaction, is used. The amplification of the 

wave is described by the evolution of its amplitude along the transverse coordinate ζ = Ckx. In the 

equations above, n is the section number, L is the normalized length of the section. The factor 

ε = ∆VZ/VZ describes accounting for the spread of translational velocities of different fractions of the 

electron beam, -S/2 ≤ ε ≤ S/2. 

The boundary conditions describe the reflection of the wave from the “upper” mirror of the 

“n+1” section into the “lower” mirror of the “n” section with a phase shift Ψ, describing the 

movement of the wave packet from one section to another, as well as the absence of an external 

signal at the entrance to the last (in our example, the fourth) section (here, ξ0 is the normalized 

transverse size of sections): 

 ( ) ( ) ( )
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The evolution of the system in time is described by the introduction of the time variable 

τ = CkVZt, so that dζ/dτ = 1. In this case, the boundary conditions (2) are transformed as follows: 

 ( ) ( )1 0ξ 0, τ ξ ξ ,  τ  n na a T
+

= = = − , 1, 2,3 n = , ( )4  ξ 0,  τ 0  a = = . (3) 

Here T ~ L is the normalized delay time during the passage of the wave from section to section. 

Note that in our problem, the longitudinal and transverse coordinates can be re-normalized as 

follows 

  0ξ ξ / ξ= ,
 0
ζ ξ ζ  = . (4) 

3. Stationary small-signal theory 

When modeling equations (2), we find the normalized length of the section, (ξ0L)0.5
 and the 

mismatch of the electron-wave resonance δ which provide the starting conditions for this system, 

while considering the phase shift of the wave between the sections as an independent parameter. 

According to Fig.2, δL = -Ψ, which has a simple physical meaning. The formula δ~(ω-Ω)/VZ 

corresponds to the resonant condition ω-Ω ≈ hVZ, where h = -Ψ/L is the effective longitudinal 

wavenumber of the excited wave. Accordingly, at Ψ → 0 we have a gyrotron mode of electron-

wave interaction, and at large Ψ we have modes of the type gyro-BWO (h < 0) and gyro-TWT 
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(h > 0) critical to the velocity spread. The law of frequency tuning with a change in the magnetic 

field is piecewise, which is explained by the periodic dependence of the starting characteristics 

(Fig.2) on the phase Ψ. It differs from the simple law ω = Ω, since both the electron-wave 

synchronism mismatch δL = D(ω-Ω) and the phase jump of the wave between the sections Ψ = Aω 

depend on the frequency. Taking into account the formula δL = –Ψ, this leads to the fact that the 

derivative ∂ω/∂Ω turns out to be less than one: 

 ( )
1

ω Ω Ω
1 /A D

=
+

. (5) 
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Fig.2. (a) Model illustration. (b) The full normalized starting length of the system depending on the number of 

sections in the case Ψ = 0. (c, d) The normalized initial length of one section and dimensionless detuning depending 

on the phase shift of the wave between the sections Ψ at different electron velocity spreads S. 

4. Non-linear spatial-temporal theory 

The predicted piecewise nature of the dependence of the generation frequency on the magnetic 

field ω(Ω) is also confirmed in the framework of nonlinear space-time calculations. Fig.3 illustrates 

the dependences of the normalized generation power (electronic efficiency) η = <u> and of the 

normalized frequency of the generated wave ∆[a~exp(i∆τ)] from the synchronism mismatch δ 

“responsible” for the change in the magnetic field (in this case, the dependence ω = Ω in terms of 

normalized parameters corresponds to the dependence (∆ = –δ) in the case when the normalized 

length of the section L = 0.7 exceeds the starting length by 40% (Lst ≈ 0.5). At the same time, the 

size of the intervals of continuous frequency tuning decreases with the growth of the normalized 

time T, which describes the delay of the wave during its transition from section to section. 

Fig.3c illustrates the dependences of the normalized power of the output wave signal η on the 

time τ for different values of the normalized magnetic field -δ (points A, B and C in Fig.3b). It can 

be seen that the generation power in steady-state mode is approximately the same in all three cases, 
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however, the scenarios for the system to be stationary are somewhat different. In the case of B, 

corresponding to the center of the considered interval (branch) of the dependence ∆(δ) of 

continuous frequency tuning, the output to the stationary occurs in an almost single-frequency 

oscillation mode, while in modes A and C, corresponding to the edges of this branch ∆(δ), 

fluctuations in the generation power are observed, which correspond to the competition of the wave 

from this branches of dependence ∆(δ) with waves at frequencies corresponding to neighboring 

branches. 
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Fig.3. The dependences of the output efficiency η (a) and the normalized frequency of the excited wave ∆ (b) on the 

normalized magnetic field (detuning) -δ in the stationary generation mode in the cases of delay times T = L (black 

curves) and T = 3L (blue curves). Fig.3c illustrates the dependences of the normalized power of the output wave 

signal η on the time τ for different values of the normalized magnetic field -δ (points A, B and C in Fig.3b). 

5. Conclusion 

Summarizing the above, we can say that the quasi-analytical linear theory, developed within the 

framework of the simplest stationary single-frequency 2-D model of the zigzag gyro-BWO, allows 

us to explain the main features of this device predicted earlier [1] by a more complete simulations 
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requiring much more computer resources. The small-signal part of this theory explains peculiarities 

found earlier in the PIC simulations of changing the operating frequency and power of the output 

signal in the process of the broadband frequency tuning provided by changing the operating 

magnetic field. In particular, the theory predicts different types of the electron-wave resonance at 

different shifts of the wave phase between the sections of the system and, as a result, a piecewise 

character of changing the operating frequency and power of the excited wave in the process of 

changing the operating magnetic field. The development of our simplest quasi-analytical 2-D model 

to the nonstationary spatial-temporal approach allows us to describe dynamics of mode competition 

in such a system. This problem arises due to the existence of two different solutions corresponding to 

the two different waves from different segments of the piecewise frequency characteristic of the 

oscillator at the same operating magnetic field. In addition, our nonstationary theory predicts the 

existence of regimes of both periodic and stochastic automodulations of the output power realized in 

this system at relatively high operating currents. 
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