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Abstract. The coupled model for laser treatment of plate is presented in this paper. The model takes 

into account viscoelastic stresses and strains due to temperature and composition change. Heat 

capacity and viscosity depend on liquid phase fraction. The numerical algorithm is described. 

Examples demonstrate qualitative features appearing in the model with melting and heat losses into 

environment. The coupled and non-coupled models give different results.   
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1. Introduction 

There are fundamentally different methods of synthesizing 3D material in powder technology. 

In one of them, the powder is preliminary sprayed on the surface to be treated and then the surface 

is scanned by laser radiation or an electron beam. In the other, the powder is fed directly into a melt 

bath, which is pre-formed in the area of a moving energy source. In either case, the powder 

undergoes a change from a solid state to a liquid state and back; the entire process is accompanied 

by a variety of physical and chemical phenomena. Before the planetary scale boom in additive 

technologies, similar methods were actively developed for coating and surface treatment of 

materials. In mathematical modeling of the accompanying phenomena, the problem arises of 

selecting or constructing a suitable model that adequately describes the behavior of the material in 

both the solid and liquid phases, as well as in the two-phase region. Related to this is the variety of 

modeling approaches. Numerous publications analyze purely thermophysical models for calculating 

temperature fields at different variants of the heat source setting; study the behavior of fine particles 

in the melt bath; describe powder melting and melt flow in the unmelted powder, including using 

filtration theory; analyze variants for calculating residual stresses, etc.  

In spite of the fact that each of the approaches allows obtaining interesting results and studying 

a number of phenomena, the process of creating a new material in dynamics and accompanying 

phenomena prove to be insufficiently studied. 

The present work aims to formulate the coupled model the treatment by moving heat source of 

powder layer placed on a substrate assuming that material conversion «powder-liquid-solid» cab be 

characterized by changing viscoelastic properties. 

 

2. General equations 

A Maxwell-type model is used as the basis, which allows a transition to both a fluid and an 

elastic body when the shear viscosity coefficient changes [1]. Within the framework of this model, 

the relations 
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Here κ is shear viscosity coefficient; K = λ + 2μ/3 is bulk module; λ, μ are Lamé coefficients; the 

function ω depends on temperature and composition 
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where αT is the thermal expansion coefficient; Ck are species concentrations; αk are the coefficients 

of concentration expansion; index «0» relates to an initial state. 

In limiting case κ→ ∞ we come from (1) to  

 [ ]ω−λεδ+µε=σ Kkkijijij 2  (3) 

In the case of κ→ 0, we have the relation between stress σij and strain εij components similar 

ideal fluid with spherical stress tensor. 

In the literature, such models are used to describe the mechanical behavior of media with both 

liquid and solid properties. Viscous and/or elastic-viscous-plastic properties often characterize 

materials undergoing structural transformations [2], solid materials with diffusion-controlled 

chemical reactions [3]; composites [4], materials used in pharmaceuticals [5]. Powder media behave 

similarly to a viscous liquid [6]. In [7] an attempt has been made to describe the change in the 

thickness of a thin powder layer due to the change in porosity during the electron beam treatment on 

the basis of model (1). 

In the present paper, we use the Maxwell model (1), taking into account changes in the heat 

capacity and viscosity around the melting point, to build a more detailed model of the surface 

treatment of the material by laser radiation. In our case, this is quite a suitable model, since the 

reactants and reaction products can be in both solid and liquid states; there are regions with different 

rheological properties in the treatment zone. To the equations written out we should add the energy 

equation in the form of the heat conduction equation, as well as the kinetics equations describing 

the change in composition. 

For a specimen that has the shape of a thin plate or layer located on a flat substrate, we accept 

the following assumptions: (1) the specimen is in a plane stress state; in this case, σzz = σxz = σyz = 0; 

(2) chemical reactions can take place in the treated layer, which we describe by the summarized 

"reagent-product" scheme; (3) material is considered incompressible. Then we assume that of all 

properties, only heat capacity and viscosity depend significantly on temperature. 

It is known that in the vicinity of the melting point the heat capacity increases sharply, which 

in classical theory is described by the Dirac delta function. For simple or single-component 

materials, this is quite a suitable way to describe it. However, for binary systems (e.g., two kinds of 

powders), the appearance of a two-phase zone – a region where liquid (fusible component) and 

solid phase (refractory particles) are simultaneously present – begins to play an important role in the 

melting process. In this case, to describe the melting process, we can introduce two temperatures T1 

and T2. The first will correspond to the melting temperature of the fusible component, the second to 

the melting temperature of the refractory particles. Between these two temperatures, the fraction of 

liquid phase ηL in the system will change from 0 to 1 according to some law ηL = ηL(T).  

The viscosity for the powder medium, the melt with particles, the fully melted particle mixture 

and the final material after solidification can vary considerably. For simplicity, we will assume that 

the viscosity depends on the fraction of the liquid phase and changes from the effective viscosity of 

the powder medium, to the viscosity of the melt, and then on cooling (away from heat sources) to 

the viscosity of the new material. There are no experimentally established or theoretically 

substantiated laws in the literature for κ when phase and chemical composition change. Therefore, 

we use the simplest linear approximation in the model. For example, in the case of melting, 

κ = κp (1 – ηL) + κLηL. 

Next, assume that the chemical reactions leading to the formation of the product begin when 

the liquid phase appears. Then the kinetic equation describing the process as a whole will look like 
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where k0 is an pre-exponential factor; EA is activation energy of the total chemical reaction; αV is 

the sensitivity coefficient of the reaction rate to the work of mechanical stresses Π; φ(η) is some 

kinetic function; R is universal constant gas. 

To simplify the situation, let's assume that the laser beam is expanded in a line, which leads to 

an effective heat source of the form:  
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where a is an effective source radius; V is its velocity along the surface. 

I.e. now we have all quantities independent of z or y: 

zzxxkkyyxyxy ;;; ε+ε≈ε=ε=ε=σ 000  

As a result, the model will include one-dimensional, but coupled equations: 

( ) 








∂

ε∂
+

∂

ε∂
α−−α−+++

∂

∂
λ=

∂

∂
ρε

tt
TKTTDWW

x

T

t

T
c zzxx

TeffextchT 302

2

;  

2

2

2

2

tx

xxxx

∂

ε∂
ρ=

∂

σ∂
;  

( ) ( )





ω−ε

κ

µ
+ω−λε

∂

∂
+

∂

ε∂
µ=σ

κ

µ
+

∂

σ∂
kkkk

xx
xx

xx KK
ttt

2 ;  

( ) ( )ω−ε
κ

µ
+ω−λε

∂

∂
=σ

κ

µ
+

∂

σ∂

kkkkyy
yy

KK
tt

;  

( ) ( )





ω−ε

κ

µ
+ω−λε

∂

∂
+

∂

ε∂
µ= kkkk

zz KK
tt

20 ; ( )ΠηηΦ=
η

,T,,
dt

d
L , 

where αeff is some effective coefficient of heat loss to the environment by convection and to the 

substrate; Wch = Q(dη/dt) is the heat source associated with chemical reactions; D = σxx(∂εxx/∂t) is 

the viscous dissipation. 

Thus, for the six variables T, η, σxx, εxx; σyy, εzz 
 
we have six equations.   

At the initial moment of time t = 0 we have  

.;;;;TT ijijL 00000 =ε=σ=η=η=  

 

3. Algorithm and Examples 

The next step is to develop a computational algorithm. The main steps are as follows. (1) First, 

a transition to dimensionless variables is made; scale relations give dimensionless complexes, 

whose values determine the subsequent development of the algorithm. (2) The equations are then 

given a form that allows the use of known methods. Since the model is coupled and the equations 

cannot be completely separated, the numerical implementation of the model uses separation by 

physical processes; convergence is investigated by varying the spatial and time steps, and iterations 

at each time step may be applied. (3) Then, a detailed parametric study is carried out, which makes 

it possible to identify the peculiarities of the synthesis process in different regions of variation of the 

parameters responsible for the external control and the parameters reflecting the properties of 
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materials and the nature of their variation. The problem in the choice of the algorithm is also related 

to the presence of different stages – essentially nonstationary and almost stationary stage with a 

moving two-phase zone of constant size, where different coordinate and time step ratios turn out to 

be optimal from the viewpoint of minimizing the computational error. 

The scales in the model are defined as follows 
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Examples are presented below to illustrate the role of viscosity changes in the region where the 

liquid phase appears in the evolution of properties and associated stresses. There is no chemical 

reaction or it has no effect on either the properties or the temperature and stress fields. In the 

calculations, it is assumed that: 
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The heat source starts moving from the point ξ = 0.1. Sample length is L = 10. 

Variant 1. If the problem is uncoupled, ω = 0, there is no melting and no heat loss by 

convection, Nu = 0, where 
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then at this set of parameters at the initial stage the stresses in the direction of motion of the heat 

source practically repeat the change in temperature. Coming to a quasi-stationary regime 

corresponds to a practically unchanged temperature, in this case greater than 0.93; the size of the 

region with the maximum temperature and maximum stresses expands. Deformations ez behave 

similarly (this is not shown in the drawings). In the steady-state stage, there is no complete 

similarity between all quantities. However, high stress and strain gradients take place where there 

are high temperature gradients, i.e., in the vicinity of the external heat source. The numerical values 

of all quantities depend on viscosity, which is unchanged in this case. 

Variant 2. Taking melting into account, we get a generally similar picture, but both the 

maximum temperature (below 0.9, Fig.1a) and the maximum stresses decrease. At a given value 

q = 1.2, complete melting is not observed. There are two phases in the region left by the external 

source. The two-phase zone, bounded in Fig.1b by curves, gradually expands. In the same area, the 

heat capacity and viscosity change in a similar way. 

Variant 3. Heat loss to the environment leads to a qualitative change: in the two-phase zone the 

temperature is not constant, the share of the liquid phase also changes gradually (Fig.2). Similar 

evolution is typical for other values. At the steady-state stage there appears a two-phase region of 
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constant size (Fig.3a, dotted curves), bounded, on the one hand, by the value of ηL = 0, and on the 

other hand, by the value of ηL,max, attainable at given parameters. The smaller is the value of ηL,max, 

the less changes in heat capacity and viscosity are evident. 
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Fig.1. Temperature (a) and liquid phase fraction (b) distributions for variant 2. Time moments, τ: 1 – 10-4; 2 – 5·10-4; 

3 – 1.5·10-3; 4 – 3·10-3; 5 – 5·10-3; 6 – 8·10-3. 
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Fig.2. Temperature (a) and liquid phase fraction (b) distributions for variant 3. Time moments, τ: 1 – 10-4; 2 – 5·10-4; 3 

– 1.5·10-3; 4 – 3·10-3; 5 – 5·10-3; 6 – 8·10-3. 

 

Variant 4. Let's compare temperature and liquid phase fraction distributions at steady-state 

stage (Fig.3a, Fig.3b) for uncoupled (dotted curves) and coupled (ω = 0.2) models (solid curves in 

Fig.3a, Fig.3b). A small change in the maximum temperature leads to a significant decrease in the 

liquid phase fraction. The stresses (Fig.3c) are shown only for the time moment corresponding to 

curves 5. The energy distribution in the external source (Fig.3c) is also given for one time moment. 

 

4. Conclusion  

Thus, the paper presents a model of surface treatment by laser radiation, taking into account 

melting, possible chemical reaction and viscosity change with the appearance of the liquid phase 

fraction. The coupled nature of the model is manifested both in the accounting of viscous 

dissipation and in the possible change in the reaction rate. It is shown that accounting for heat losses 

to the environment leads to a qualitative change in temperature and property distributions. The 

appearance of a two-phase zone of constant dimensions at the steady-state stage is due to the 

interaction of processes of different nature. 
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Fig.3. Tepperature (a) and liquid phase fraction (b) distributions for different time moments, τ: 1 – 2.4·10-2; 2 – 3.4·10-2; 

3 – 4.4·10-2; 4 – 5.4·10-2; 5 – 6.4·10-2. Stresses (c) for time τ = 6.4·10-2 and energy in heat source (d) distributions. Solid 

lines – coupled problems; dotted lines – non-coupled problems. 
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