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Abstract. The paper presents the results of 3D numerical simulation of the processes of deformation 

and ductile fracture of hexagonal close packed titanium and zirconium alloys under dynamic impacts. 

Based on the generalization of the obtained experimental data, a version of the model is proposed that 

allows to adequately describe the regularities of plastic deformation during tension, the formation of 

zones of localization of plastic shears and the development of damage and fracture in a wide range of 

strain rates and spall fracture in plates under plane shock waves impacts. Proposed constitutive 

equation described the mechanical response of HCP titanium and zirconium alloys in a wide range of 

strain rates at the temperatures below temperature of phase transformation. It was shown that using of 

the kinetic model of the damaged medium is justified at high strain rates in complex stress conditions 

in the spall zone and around it. 

 

1. Introduction 

The need to predict the mechanical behavior of metals and alloys with a hexagonal close-

packed (HCP) lattice under dynamic loads arises when solving a wide range of applied problems. 

HCP metals and alloys are being used in critical structures of energetic equipment and transport 

systems due to their high specific strength properties in comparison with traditional face-centered 

cubic (FCC) and the body centered cubic (BCC) alloys [1, 2]. A number of constitutive equations 

and fracture models of HCP alloys have been proposed [3–6]. Zerilli and Armstrong proposed 

constitutive models based on the dislocation kinetics of plastic flow and taking into account the 

difference in the regularities of strain hardening, thermal softening, and flow stress rate sensitivity 

for FCC and BCC metals with face-centered cubic (FCC) lattice, lattice and HCP crystalline lattice 

[3]. Gao et al. developed a constitutive model for HCP metals, which made it possible to more 

adequately describe the mechanical behavior of Ti-6Al-4V in a wide range of strain rates and 

temperatures, in comparison with the constitutive equations of the Johnson-Cook and Armstrong 

Zerilli models [4]. Nemat-Nasser et al. showed that, in order to adequately describe the high rate 

deformation of CP-Ti, it is necessary to take into account, in addition to the motion of dislocations, 

the contributions of twins [5]. Song et al analyzed the experimental data of Nemat-Nasser and 

proposed a model to describe the influence of the dynamic strain aging on the mechanical behavior 

of titanium alloys in a wide range of strain rates and temperatures up to 1000 K [6]. At the same 

time, the question of the adequacy of the proposed models for describing the mechanical response 

of various HCP metals and alloys under dynamic loading remained open. 

Frost et al. showed the similarity laws of the mechanical behavior of HCP alloys subgroups in 

the temperature range of crystal lattice stability and a wide range of strain rates [7]. The unit cell of 

HCP crystalline lattice can be imagined as a hexagonal prism with one atom on each vertex, and 3 

atoms in the center. In contrast to cubic unit cells of FCC and ВСС crystals, HCP unit cell has two 

different crystal lattice parameters c and a (c > a).  

HCP alloys can be divided into three isomechanical subgroups, depending on the ratio of the 

crystal lattice parameters (c/a), where c and a are parameter of crystalline cell [8]. The first 

subgroup includes HCP metals (α-Ti, α-Zr, Hf, α-Be, Sc, Y, Ru) has the ratio c/a <1.633, the 

second subgroup includes Mg, and Co has the ratio c/a ≈ 1.623, and the third subgroup includes 

metals Zn, Cd, La, Pr with c/a> 1.633 [7]. 

This work aimed to study the processes of deformation, damage and ductile fracture of HCP 

alloys under dynamic influences. Based on the generalization of the obtained experimental data, a 

version of the model is proposed that allows to adequately describe the regularities of plastic 
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deformation during tension, the formation of zones of localization of plastic shears and the 

development of damage and fracture in the range of strain rates from 10-3 to 103 s-1 at the values of 

the triaxiality parameter of the stress state from 0.33 to 0.6 [1, 2]. The model was used for 3D 

numerical modeling of uniaxial tension of specimens and spall fracture in Ti, Zr plates under plane 

shock waves impacts. The influence of the damage parameter, the stress state triaxiality parameter 

on the flow stress is taken into constitutive equation. 

 

2. Numerical simulation of plastic flow and damage evolution 

The response of HCP alloys to dynamic influences in a wide temperature range was described 

by a model of a damaged elastic viscoplastic medium [9]. The system of equations according the 

Lagrangian approach includes conservation equations of isotropic continual medium (1), kinematic 

relations (2), constitutive relations (7), Birch – Murnaghan equation of state of HCP phase of 

titanium and zirconium alloys (4) [10, 11], relaxation equation for the deviatoric stress tensor (5), 

plastic potential (6), thermodynamic relations (7)–(8), equations describing the dependence of 

elastic modulus temperatures and pressure (9).  

 / / ,i id dt u xρ = ρ∂ ∂  ,i id dt u xρ = ρ∂ ∂  ,ij j ix du dt∂σ ∂ = ρ  ( ) ,ij ijdE d tρ = σ εɺ  (1) 
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where ρ is the mass density, ui is the components of the particle velocity vector, xi is Cartesian 

coordinates, I = 1, 2, 3, E is the specific internal energy, ,
ij ij

ε ωɺ ɺ , are the components of strain rate 
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tensor and the bending–torsion tensor, the ψi(f) functions established a relation between the 

effective stresses of the damaged medium and the stresses in the condensed phase, Γ is the 

Grüneisen coefficient, ρ0 is the initial mass density of the condensed phase of the alloy, γR, ρR, n, 

B0, B1 are the material’s constants, Cp is the specific heat capacity, D(∙)/Dt is the Jaumann’s 

derivative, μ  is the shear modulus, growthfɺ  is the void growth rate, f is the damage parameter, σs is 

the yield stress, σeq is equivalent stress, p is the pressure, q1, q2, and q3 are model parameters, and f* 

is the specific volume of damages λ is the plastic multiplier derived from the consistency condition 

Φ = 0 , and Φ  is the plastic potential. 

Parameters of HCP titanium and zirconium equation of state are shown in Table 1. 

 
Table 1. Parameters of HCP titanium and zirconium 

At. 

Number/ 

Symbol 

Metals c/a ρ0, 

(g/cm3) 
 

(GPa)  

at 295 

K 

ν B0 

(GPa) 

B0’ Tm (K) Tpt (K) 

 

Isomec

hanical 

subgro

up 

22 Ti α-Titanium 1.58734 4.51 42.65 0.327  108.9 4.4 1941  1155  I 

40 Zr α-Zirconium  1.59312 6.49 36.17 0.336 98.4 3.8 2128 1135  I 

 

For the HCP titanium and zirconium alloys the Grüneisen parameter was assumed equal to 

Γ = 1.09. 

The criterion of plasticity (6) for damaged media proposed by Gurson and modified by 

Tvergaard was used for dynamic loadings simulation of HCP alloys [12–14]. The dynamic yield 

stress YHEL (T) at the Hugoniot elastic limit can be determined by formula (7) taking into account 

(8). 

 
( )

( )

1

1 2
HEL HELY

− ν
= σ

+ ν
. (7) 

The Hugoniot elastic limit σHEL (T) of shock-loaded alloys at the initial temperature T can be 

estimated by relation (8) taking into account CL (T) and ρ (T) [9]: 

 ( ) ( ) ( ) ,HEL L HELT T C T uσ =ρ  (8)  

where uHEL is amplitude of the particles velocity in the elastic precursor, CL is longitudinal sound 

velocity. 

The model constitutive equation of the considered isomechanical subgroup of HCP alloys takes 

into account the effect on the flow stress of the temperature T, the equivalent strain rate, 

accumulated equivalent plastic strain, the pressure p, and the overage grain size dg. 

 ( ), , , , .
p p

s s eq eq gT p dσ = σ ε εɺ  (9) 

Unlike FCC and BCC metals and alloys, plastic deformation of single crystals and grains of 

metals with an HCP lattice is caused not only by the sliding of dislocations along prismatic, 

pyramidal and basic systems with significantly different Burgers vectors, but also by twinning in a 

number of systems. 

It is proposed to represent the macroscopic plastic flow stress as the sum of the contributions of 

the stresses required to overcome the resistance to dislocation slip, resistance to twinning, and 

stresses from the inhomogeneity of the phase composition of the alloy. 
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where σ0 is material parameter depending on the phase composition of the material, (T, ρ) is the 

shear modulus, ρ0 is the initial mass density, p is the pressure, σs
disl is the contribution of dislocation 

slip to macroscopic flow stress, σs
tw is the twinning contribution to macroscopic flow stress. 

It was proposed to determine the stresses required to ensure dislocation slip in the subgroup of HCP 

alloys with a ratio of crystal lattice parameters with / a <1.633 using formula (11). 
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where dg is the grain size, disl

hpk  , C0, α0, α1 are material parameters, 0

p
εɺ  is parameter normalizing the 

plastic strain rate, p
eqε  is the equivalent plastic strain. 

The stresses required to ensure twinning tw
sσ were calculated by Eq. (12). 
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where dg is the grain size, tw

hpk , A0, β0, β1 are material parameters, N is a phenomenological 

parameter that takes into account the possibility of de twinning when the shear stress sign changes. 

Effect of twinning and de-twinning take place in Ti and Zr during loading and unloading. 
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where S2 is the second principal stress, n1, n2 are constant of material, Δ p
kε  is the increment of 

equivalent plastic strain during unloading. 

Parameters of constitutive equation for some HCP titanium and zirconium alloys are shown in 

Table 2. 
 

Table 2. Parameters of constitutive equation for several HCP alloys 

Alloy C0, 

GPa 

disl
hpk ,  

GPa 

m1/2 

α0, K-1 α1, K-1 
0

p

dislεɺ , 

s-1 

A0, 

GPa 

tw

hpk ,  

GPa 

m1/2 

β0, K-1 β1, K-1 
0

p

tw
εɺ , 

s-1 

CP Ti 0.4 0.269 0.00224 0.00275 103 1.85 0.18 0.0002 0.000973 103 

Ti-6Al-4V 1.05 0. 269 0.0022 0.00205 103 1.85 0.4297 0.0002 0.001809 103 

Ti-5Al-2.5Sn 0.665 0.628 0.0224 0.002 103 1. 5 0.628 0.0002 0.00222 103 

Zr 1.08 0.250 0.00807 0.000395 103 1.03 0.250 0.0001 0.000064 103 

Zr-1%Nb 

(E110) 
1.68 0.368 0.00807 0.0014 103 0.72 0.368 0.0001 0.000064 103 

Zr-2.5Nb 

(E625) 
1.185 0.368 

0.00807-

0.00045 
0.000395 103 0.525 0.368 0.0001 0.000275 103 
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Ductile fracture of HCP alloys is the result of the damage nucleation and growth at the 

mesoscopic level. The damage nucleation in HCP alloys under dynamic loadings occurs due to the 

exhaustion of the possibility of local accommodation of plastic deformation in the bands of 

localized shear or in the zone from the intersection. 

Equations (14) were used for describing the kinetics of damage [12, 15]. 
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where f is the damage parameter, ( )
1

stress
nuclfɺ  is the constituent of ( )stress

nuclfɺ  associated with damages 

caused by negative pressure, ( )
2

stress
nuclfɺ  is the constituent of damages caused by voids evolution under 

repeated loading, C1, C2, fN, β1sn, β2sn, γ1 are model parameters, εN is the average nucleation strain, 

sN is the standard deviation respectively, We, and Wp are the specific internal energy, and the 

specific dissipated energy, respectively. 

The modification damage equation (14) makes it possible to describe the kinetics of the 

damage parameter ( )stress
nuclfɺ  increasing at spall fracture as a result of nucleation, growth and 

coalescence of voids. The specific volume of damages f* was calculated by relation (15). 

 * ( ) [ ( ) / ( )] ( ),c c F c F c cf f H f f f f f f f H f f= ⋅ − + + − − ⋅ −  (15) 

where f is damage parameter, H(.) is the Heaviside function, 2 1/2
1 1 3 3( ( ) ) /Ff q q q q= + − , fc is failure 

parameter. 

Parameters of Eq. (14) and Eq. (15) are shown in Table 3. 
 

Table 3. Dimensionless parameters of the damage model. 

Material q1 q2 q3 f0 fN fc fF εN sN 

CP Ti 1.5 1 1.6 0.001 0.002 0.035 0.12 0.3 0.005 

Ti-5Al-2.5Sn 1. 0.7 1. 0 .003 0.1156 0.117 0.260 0.11 0.005 

Ti-6Al-4V 1.5 1 1.5 0.001 0.04 0.03 0.04 0.05 0.1 

Zr 1.5 1 1 0.001 0.2 0.035 0.4 0.28 0.1 

Zr-1% Nb 1.3 1.0 1.69 0.001 0.2 0.035 0.4 0.28 0.1 

Zr-2.5% Nb 1.5 1 2.25 0.001 0.004 0.17 0.2 0.3 0.1 

 

The final stage in ductile fracture comprises the voids coalescence. This causes softening of the 

material and accelerated growth rate of the void fraction f*. The volume of the material is 

considered fractured when the percolation threshold of voids is reached in the damaged material. 

Macroscopic fracture criterion (16) was used in the calculations. 
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 * 0.3f ≥ . (16) 

The proposed constitutive equation and damage evolution model include material coefficients 

whose numerical values for alloys can be estimated using a set of experimental data from 

independent experiments on the laws of deformation and fracture of alloys in a wide range of 

deformation rates and temperatures.  

The model was used for numerical simulation of tension of flat specimens of titanium and 

zirconium alloys with strain rates from 0.1 to 1000 s-1. 

The initial conditions of specimen’s material correspond to the initial uniform temperature field. 

The numbering of surfaces in the boundary conditions when modeling the tension of flat specimens 

is shown in Fig.1.  

 

(a)  (b)  
 

Fig.1. Numbering of surfaces in boundary conditions: (a) uniaxial tension of the flat specimen, (b) plane impact of 

plates. 

 

Boundary conditions corresponding to uniaxial tension of the specimen (Fig.1a) at a constant 

strain rate have been used in the form (17): 

 
2 2 1 1 3 3

2 4 5 61 3 1 3 1 3
20, , 0, 0, 0, 0, 0,x x x x x x ij S S S SS S S S S S

u u v u u u u
∪ ∪ ∪

= = = = = = σ =  (17) 

where 
j

i S
u are the components of the particle velocity vector on the surface Sj and v2 is the tensile 

velocity. 

Boundary conditions corresponding to uniaxial tension of the specimen (Fig.1b) at a constant 

strain rate have been used in the form (18): 

 
1 2 3 4 5 6

11 11 22 22 33 330, 0, 0, 0, 0, 0,
S S S S S S

σ = σ = σ = σ = σ = σ =  (18) 

where ijσ are the components of the stress tensor on the surface Sk. 

The computer simulations were performed with the use of LS DYNA (ANSYS WB 15.2, 

ANSYS, Inc., Canonsburg, PA, USA) software. The calculations were carried out using the 

finite‐difference scheme of second order accuracy. Computational domains were meshed with 

eight‐node linear bricks and reduced integration together with hourglass control. 

 

3. Results and discussion 

Numerical simulations of titanium alloy specimens subjected to tension were out carried to 

study damage kinetics and the influence of damage on mechanical behavior. The calculated values 

of effective plastic strain obtained in the simulation uniaxial high-rate tension of Ti-5Al-2.5Sn 

samples in comparison with experimental data [14] are shown in Fig.2. Two inclined stationary 

shear bands were formed in the neck zone. The simulations demonstrate the important role of 
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plastic strain localization phenomena in dynamic damaging processes of HCP alloys. The cracks 

position indicates a very strong correlation between the plastic strain localization and damage 

accumulation. The evolution of the calculated strain field and the fracture zone configuration are 

consistent with the data obtained by the digital image correlation (DIC) method at strain rates from 

0.1 to 1000 s-1. The value of the plastic deformation of the beginning of the formation of 

mesoscopic shear bands at different loading conditions correlates with values estimated by the 

Considère criterion (19) [16].  

 

 
Fig.2 (a) Calculated equivalent strain in gage zone of flat specimen of Ti-5Al-2.5Sn under tension at 1000 s-1 before 

crack formation; (b) the experimental data [14] on strain distribution determined by the DIC method. 
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The computational stress-strain diagrams obtained when simulating uniaxial high-rate tension of Ti-

5Al-2.5Sn, α-Zr alloy samples in comparison with experimental data are shown in Fig.3. The 

calculated value of the strain Aist α-Zr at the beginning of the formation of a stationary strain 

localization band is shown in Fig.3b. 
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Fig.3. (a) Calculated stress versus strain and experimental true stress vs true strain curves of Ti-5Al-2.5Sn [14];        

(b) calculated true stress vs true strain curves and strain hardening of α-Zr under tension. 

 

The processes of spall fracture of Ti-5Al-2.5Sn under sub microsecond shock pulse loading 

were investigated by the method of numerical simulation. The calculated free surface velocity 

profile of the 4 mm thick plate (Ti-5Al-2.5Sn) subjected to planar impact (660 m/s) by 2 mm 

aluminum plate closely matches experimental data, as seen in Fig.4a [17]. The calculated free 

surface velocity profile of the 5 mm thick plate (α-Zr) subjected to planar impact (600 m/s) by 2.5 

mm aluminum 6082-T6 plate closely matches experimental data, as seen in Fig.4b [18]. The spall 
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fracture is a result the damage nucleation, growth and coalescence under repeated processes tension 

and compression conditions in interacted waves. 
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Fig.4. (a) Shock wave profiles in Ti-5Al-2.5Sn; solid curve is the experimental data [17], dashed curve is calculated 

data; (b) the distribution of the equivalent stress near spall crack at it's formation of in the Ti-5Al-2.5Sn; (c) shock 

wave profiles in Zr (b); solid curve is the experimental data [18], the calculated data is shown by dashed curve. 

 

Shock pulses of the amplitude up to 6 GPa (or particle velocity amplitude up to 290 m/s) 

propagate in the Ti-5Al-2.5Sn plate with a formation of the two-wave structure of the shock wave. 

The elastic precursor wave velocity derived from simulation (6.148 km/s) is in agreement with 

experimental data (~6.15 km/s). The bulk wave velocity depends on the load amplitude due to 

plastic deformation occurring in its front. The numerical experiments have shown that the bulk 

wave velocity approaches 5.1 km/s under considered pulse-load amplitudes. Release waves are 

formed due to the reflection of the shock wave from free surfaces. Interaction of opposite release 

waves results in the negative pressure sufficient to the spall crack nucleation. Reflection of release 

wave from the spall crack surface results in the reloading wave formation. The free surface velocity 

growth occurs due to reloading wave arrives at the free surface, as seen in Fig.4a. The distribution 

of local values of the flow stress σeq in the spallation zone changes in time. Note, the stress 

triaxiality parameter η = – p/σeq is changed in zone of spall crack formation. The stress relaxation is 

caused by the development of inelastic deformation in the condensed phases of the alloy and the 

formation of free surfaces in meso- and macroscale voids. The spall crack is shown in Fig.4b are 

formed by coalescence of damaged mesoscopic volumes. In the spallation zone there are local 

volumes in which the alloy has undergone large plastic deformation during the spallation. These 

inelastic deformations arise upon repeated loading of the alloy by reflected loading and unloading 

waves. Therefore the surfaces of spall macro crack in HCP alloys have a relief. The specificity of 

the mechanical behavior of considered first isomechanical subgroup HCP alloys is that the 

contributions to the flow stress from dislocation slip and twinning at temperatures near to room 

temperature and pressures less ~4 GPa are comparable. However, the ratio of these contributions 

changes significantly at the localization of plastic flow, and changing the loading from tensile to 

compressive. In the proposed model, change in the contributions of twinning to the flow stress is 

described by relations (12) and (13). The use of relation (14) is necessary to adequately take into 

account the change in the contribution of damage evolution when changing from tensile to 

compressive loads. The introduction of the damage contribution into the model made it possible to 

obtain a qualitatively correct and good quantitative description of the unloading and reloading wave 

profiles in the calculation. 

 

4. Conclusion 

The regularities of mechanical behaviour of HCP metals and alloys (α-Ti, α-Zr) belonging to 

the first isomechanical subgroup are similar. The constitutive equation for describing the 
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elastoplastic behavior of HCP alloys with c/a < 1.633 is constructed within the framework of 

modern physical concepts of the main mechanisms providing plastic flow including the generation 

and sliding of dislocations, twinning and de-twinning. 

The proposed constitutive equations and damage model make it possible to describe the main 

regularities of the mechanical behavior of a subgroup of HCP alloys with a lattice parameter ratio 

c/a < 1.633 in a wide range of strain rates and weak shock wave amplitudes. 

The introduction of the twinning contribution into the model made it possible to obtain a 

qualitatively correct and good quantitative description of the unloading and reloading wave profiles 

in the calculation. 

The mathematical form of constitutive equation differs from the equations for BCC and FCC 

materials. 

The fracture of alloys belonging to the isomechanical subgroup of HCP metals with a ratio of 

the crystal lattice parameters c/a <1.633 is ductile under tension with strain rates from 100 to 

1000 s-1. The results of experimental studies and numerical simulations have shown that the cracks 

formation during dynamic fracture of HCP titanium and zirconium alloys under tension occurs near 

localized shear bands. 

The dynamic fracture of alpha titanium and zirconium alloys under tension at strain rates from 

100 to 103 s-1 is a result of nucleation, growth and coalescence of damages in localized bands of 

plastic deformation.  

The obtained results of numerical simulation of the spall fracture of alpha titanium and 

zirconium alloys are consistent with the available experimental data on plane impact of plates. It is 

shown that spall microcracks oriented perpendiculars to the direction of impact are formed by 

coalescence of damaged mesoscopic volumes. In the spallation zone there are local volumes in 

which the alloys have undergone large plastic deformation in the process of spall fracture. These 

inelastic deformations arise upon repeated loading of the alloy by reflected loading and unloading 

waves.  
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