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Currently an important task is to achieve a more accident tolerant fuel (ATF) cladding that by virtue of 

its higher oxidation resistance would allow for increased coping times under a loss of coolant 

accident (LOCA) scenario [1]. One of the many ways to create ATF is to apply chromium-containing 
coatings using a low-energy high-current electron beam [2, 3]. Molybdenum is used as a barrier layer 

between zirconium and chrome-containing coatings [4]. For example, the FeCrAl alloy provides excellent 

oxidation resistance, but Fe forms eutectics with Zr at temperatures up to 1201 K, which leads to mutual 
diffusion and associated melting. Molybdenum is used as an interlayer coating due to its high melting point 

(2893 °C), low diffusion rate of Cr, Fe and Zr into Mo, and high eutectic points with Fe and Zr [5-8]. 

The report presents the results of computer calculations of the thermal fields of the Mo-Zr system for 

the formation of protective coatings. Melting thresholds for pure metals were calculated: Mo - 7.02 J/cm2, Zr 
- 1.83 J/cm2. The dependences of melting thresholds for the Mo-Zr system as a function of film thickness 

were calculated. For film thicknesses from 0.1 to 8 μm, the film melting threshold is higher than the substrate 

melting threshold. In this case, the Zr substrate melts first, followed by the Mo film. For film thicknesses 
above 8 μm, the film melting threshold is below the substrate melting threshold. In this case, the Mo film 

begins to melt first, then the Zr substrate. The threshold of Mo melting with increasing film thickness 

increases from 2.9 J/cm2 (Mo film thickness is 0.1 μm) to 7.02 J/cm2 according to the law close to the 
polynomial of the second degree. The Zr substrate melting threshold increases from 1.83 J/cm2 (Mo film 

thickness is 0.1 μm) to infinity according to the law also close to the polynomial of the second degree. The 

dependences of the melt thickness on the NSEP energy density for the systems Mo(0.1)/Zr, Mo(0.25)/Zr, 

Mo(0.5)/Zr, Mo(1.0)/Zr are calculated. The dependences of the lifetime of the film and substrate melts on the 
NSEP energy density for the systems Mo(0.1)/Zr, Mo(0.25)/Zr, Mo(0.5)/Zr, Mo(1.0)/Zr are calculated. The 

optimum conditions for the synthesis of the surface Mo-Zr alloy have been determined. 
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