C4-P-005302

SURFACE HIGH SPEED STAINLESS STEEL ALLOYING WITH COPPER *

Yu.F. IVANOV, E.A. PETRIKOVA, A.D. TERESOV, N.A. PROKOPENKO, M.S. PETYUKEVICH

Institute of High Current Electronics SB RAS, Tomsk, Russia

The using copper as an alloying element, the addition of which in small concentrations to low-carbon steel instead of expensive elements - niobium, titanium and vanadium, leads to the appearance of high corrosion and mechanical characteristics associated with the formation of Fe-Cu precipitates in the bulk of the material [1-3]. It has been established that these precipitates are nanosized particles of a saturated (more than 1% at.) solid solution of copper in iron, while in the equilibrium state the maximum solubility of copper in iron does not exceed 0.38% at. In this case, one should speak about the properties of the material as a function of near-surface transition states. Nanosized copper-enriched particles in α -Fe formed during cooling provide high ductility and fracture toughness and cause dispersion strengthening of the steel.

The formation of the "film (Cu)/(steel 321) substrate" system was carried out on the QUINTA installation [4] by sputtering copper films 0.5 μ m thick onto steel specimens. High-speed alloying of steel with copper was carried out by irradiating the "film (Cu)/(steel 321) substrate" system with a pulsed electron beam using a SOLO setup [4]. The irradiation mode corresponded to the liquid-phase alloying of the steel surface layer with copper.

Studies performed by scanning electron microscopy showed that at an electron beam pulse duration of 50 μ s (15 J/cm², 15 pulses, 0.3 s⁻¹) a nanocrystalline structure with a crystallite size of (80-120) nm is formed on the specimen's surface. At an electron beam pulse duration of 200 μ s (30 J/cm², 15 pulses, 0.3 s⁻¹), regions with a lamellar structure are formed on the specimens surface. A structure of cellular crystallization is observed in the bulk of the plates. The cell sizes vary within (0.58-0.81) μ m. X-ray microanalysis revealed a decrease (more than 4 times) in the concentration of copper in the steel surface layer with an increase in the duration of exposure to the electron beam from 50 μ s to 200 μ s.

Using X-ray phase analysis methods, it was shown that at an electron beam pulse duration of 50 μ s, a solid solution of copper in a crystal lattice based on γ -Fe and a Fe_{0.5}Cu_{0.5} phase with a bcc crystal lattice are formed in the surface layer. With an increase in the pulse duration to 200 μ s, a two-phase structure is formed in the surface layer - γ -Fe and a phase of Fe_{0.7}Cu_{0.3} composition, which has an fcc crystal lattice.

Cu as a separate phase is not detected. An increase in the electron beam pulse duration from 50 μ s to 200 μ s leads to an increase in the crystal lattice parameter of γ -Fe from 0.35191 nm to 0.35300 nm. Taking into account the ratio of the sizes of the atomic radii of Fe (R(Fe) = 0.126 nm) and Cu (R(Cu) = 0.128 nm), we can conclude that the process of replacing iron atoms in the crystal lattice of the γ -phase by copper atoms increases with an increase in the duration of the electron beam pulse, which leads to an increase in the lattice parameter.

Thus, a two-stage mechanism of solid solution decomposition in the "film (Cu) / (steel 321) substrate" system irradiated with a pulsed electron beam was revealed, as a result of the performed studies. At an electron beam treatment duration of 50 μ s, the formation of nanosized particles of the Fe_{0.5}Cu_{0.5} phase, which has a bcc crystal lattice, is observed. With an increase in the duration of exposure to the electron beam to 200 μ s, the formation of Fe_{0.7}Cu_{0.3} composition phase, which has an fcc crystal lattice, is recorded in the steel surface layer.

REFERENCES

 L.A. Dreval. «Thermodynamic properties of liquid alloys of copper and iron with chromium, cobalt and nickel», Abstract of the dissertation of Cand. chem. Sciences. Kiev: Kiev National University, 2011.

[2] Yu.N. Gornostyrev, I.N. Karkin, L.E. Karkina, «Interaction of dislocations with nanoscale precipitates of the metastable phase and dispersion strengthening of the Fe-Cu alloy», Solid State Physics, V.53, No. 7, 2011.

- [3] S.N. Saltykov, A.M. Hoviv, A.A. Maksimenko, «On the issue of polymorphic modifications of iron in a thin-film state», Journal of Inorganic Chemistry, V. 56, No. 3, 2011.
- [4] S.V. Grigoriev, N.N. Koval, V.N. Devjatkov, A.D. Teresov, «The automated installation for surface modification of metal and ceramic-metal materials and products by intensive pulse sub-millisecond electron beam», Proc. 9th Intern. Conf. on Modification of Materials with Particle Beams and Plasma Flows. – Tomsk, 2008.

^{*}The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Number: FWRM-2021-0006).